
sqltask
Release 0.6.3

Ville Brofeldt

Dec 14, 2019

CONTENTS:

1 Supported Engines 3

2 Tutorial - Creating a simple ETL task 5
2.1 Introduction . 5
2.2 Base task . 5
2.3 Creating an actual task . 6

3 Classes 7

4 Indices and tables 11

Index 13

i

ii

sqltask, Release 0.6.3

SqTtask is an extensible ETL library based on SqlAlchemy to help build robust ETL pipelines with high emphasis on
data quality.

CONTENTS: 1

https://www.sqlalchemy.org/

sqltask, Release 0.6.3

2 CONTENTS:

CHAPTER

ONE

SUPPORTED ENGINES

SqlTask supports all databases that have a SqlAlchemy dialect and driver. The following engines have dedicated
support for the following insert modes:

Database Insert mode
Single Multirow CSV Parquet

BigQuery Yes Yes Yes
Postgres Yes Yes Yes
Snowflake Yes Yes Yes
Sql Server Yes Yes
Sqlite Yes Yes

Engines not listed above will default to using multirow inserts if supported, falling back to single row inserts as a last
resort.

3

sqltask, Release 0.6.3

4 Chapter 1. Supported Engines

CHAPTER

TWO

TUTORIAL - CREATING A SIMPLE ETL TASK

This tutorial shows how to construct a typical ETL task. A fully functional example can be found in the main repo of
SqlTask: https://github.com/villebro/sqltask/tree/master/example

2.1 Introduction

When creating a task, you will start by extending the sqltask.SqlTask class. A task constitutes the the sequential
execution of the following stages defined as methods:

1. __init__(**kwargs): define the target table(s), row source(s) and lookup source(s). kwargs denote the batch
parameters based on which a single snapshot is run, e.g. report_date=date(2019, 12, 31).

2. transform(): All transformation operations, i.e. reading inputs row-by-row and mapping values (transformed or
not) to the output columns. During transformation data can be read from multiple sources, and can be mapped to
multiple output tables, depending on what the transformation logic is. During transformation row-by-row data
quality issues can be logged to the output table if using the DqTableContext target table class.

3. validate(): Post transformation data validation step, where the final output rows can be validated prior to inser-
tion. In contrast to the data quality logging in the transform phase, validation should be done on an aggregate
level, i.e. checking that row counts are in line with what is acceptable, null counts are acceptable etc.

4. delete_rows(): If an exception hasn’t been raised before this step, the rows corresponding to the batch parameters
will be deleted from the target table. If the task is defined to have one batch parameter report_date, this step in
practice issues a DELETE FROM tbl WHERE report_date = ‘yyyy-mm-dd’ statement.

5. insert_rows(): This step inserts any rows that have been appended to the output tables using whichever insertion
mode has been specified. Generic SqlAlchemy drivers will fall back to single or multirow inserts if supported,
but engines with dedicated upload support will perform file-based uploading.

2.2 Base task

For DAGs consisting of multiple tasks, it is commonly a good idea to create a base task on which all tasks in the DAG
are based, fixing the batch parameters in the constructor as follows:

from datetime import date

from sqltask import SqlTask

class MyBaseTask(SqlTask):
def __init__(report_date: date):

super().__init__(report_date: report_date)

5

https://github.com/villebro/sqltask/tree/master/example

sqltask, Release 0.6.3

This way developers will have less ambiguity on which parameters the DAG tasks are based on. For a regular batch
task this is usully the date of the snapshot in question. It is also perfectly fine to have no parameters or multiple
parameters. Typical scenarios:

• No parameters: Initialization of static dimension tables

• Single parameter: Calculation of a single snapshot, typically the snapshot date

• Multiple parameters: If data is further partitioned, it might be feasible to split up the calculation into further
batches, e.g. per region, per hour.

In this example, the the unit of work for the task constitutes creating a single snapshot for a certain report_date.

2.3 Creating an actual task

In the following example, we will construct a task that outputs data into a single target table, reads data from a SQL
query and uses a CSV table as a lookup table. The class is based on MyBaseTask defined above. We will do the
following

• Define a target table my_table based on DqTableContext into which data is inserted.

• Define a SqlRowSource instance that reads data from a SQL query.

• Define a CsvLookupSource instance that is used as a lookup table.

We have chosed DqTableContext as our target table class, as it can be used for logging data quality issues. If we have
our primary row data in CSV format, we could also have used a CsvRowSource instance as the primary data source.
Similarly we could also use SqlLookupSource to construct our lookup table from a SQL query.

class MyTask(MyBaseTask):
def __init__(self, report_date: date):

super().__init__(report_date)

Define the metadata for the main fact table
self.add_table(DqTableContext(

name="my_table",
engine_context=self.ENGINE_TARGET,
columns=[

Column("report_date", Date, comment="Date of snapshot", primary_
→˓key=True),

Column("etl_timestamp", DateTime, comment="Timestamp when the row was
→˓created", nullable=False),

Column("customer_name", String(10), comment="Unique customer
→˓identifier (name)", primary_key=True),

Column("birthdate", Date, comment="Birthdate of customer if defined
→˓and in the past", nullable=True),

Column("age", Integer, comment="Age of customer in years if birthdate
→˓defined", nullable=True),

Column("blood_group", String(3), comment="Blood group of the customer
→˓", nullable=True),

],
comment="The customer table",
timestamp_column_name="etl_timestamp",
batch_params={"report_date": report_date},
dq_info_column_names=["etl_timestamp"],

))

TBC

6 Chapter 2. Tutorial - Creating a simple ETL task

CHAPTER

THREE

CLASSES

class sqltask.base.engine.EngineContext(name, url, metadata_kwargs=None)

create_new(database, schema)
Create a new EngineContext based on the current instance, but with a different schema.

Parameters

• database (Optional[str]) – Database to use. If left unspecified, falls back to the
database provided by the original engine context

• schema (Optional[str]) – Schema to use. If left unspecified, falls back to the schema
provided by the original engine context

Return type EngineContext

Returns a new instance of EngineContext with different url

class sqltask.base.table.BaseTableContext(name, engine_context, columns,
comment=None, database=None,
schema=None, batch_params=None,
timestamp_column_name=None, ta-
ble_params=None)

The BaseTableContext class contains everything necessary for creating/modifying a target table/schema and
inserting/removing rows.

delete_rows()
Delete old rows from target table that match batch parameters.

Return type None

get_new_row()
Get a new row intended to be added to the table.

Return type BaseOutputRow

insert_rows()
Insert rows into target tables.

Return type None

map_all(row_source, mappings=None, funcs=None)
Convenience method for mapping all rows and columns from the input row source to the output table in a
one-to-one fashion. The optional arguments mappings and funcs can be used to specify alternative column
name mappings and conversion functions.

Parameters

• row_source (BaseRowSource) – Input row source to map to the outout table.

7

sqltask, Release 0.6.3

• mappings (Optional[Dict[str, str]]) – mapping from target column name to
source column name. If the source and target names differ for one or several columns,
these can be specified here. Example: {“customer_name”: “cust_n”} would map the val-
ues in the source column “cust_n” to the target column “customer_name”.

• funcs (Optional[Dict[str, Callable[[Any], Any]]]) – mapping from target col-
umn name to callable function. If the source and target types differ for one or several
columns, a callable can be specified here. Typically this is needed when ingesting data
from a CSV file where the source data types are always strings, but might need to be cast
to int, float or Decimal. Example: {“customer_age”: int} would call int() on the source
value.

Return type None

migrate_schema()
Migrate table schema to correspond to table definition.

Return type None

class sqltask.base.table.BaseOutputRow(table_context)
A class for storing cell values for a single row in a TableContext table. When the object is created, all batch
parameters are prepopulated.

append()
Append the row to the target table. append() should only be called once all cell values for the row have
been fully populated, as any changes.

Return type None

map_all(input_row, mappings=None, funcs=None, columns=None, auto_append=False)
Convenience method for mapping column values one-to-one from an input row to the output row. Will
only map any unmapped columns, i.e. if the target row has columns “customer_id” and “customer_name”,
and “customer_name” has already been populated, only “customer_id” will be mapped.

Parameters

• input_row (Mapping[str, Any]) – the input row to map values from.

• mappings (Optional[Dict[str, str]]) – mapping from target column name to
source column name. If the source and target names differ for one or several columns,
these can be specified here. Example: {“customer_name”: “cust_n”} would map the val-
ues in the source column “cust_n” to the target column “customer_name”.

• funcs (Optional[Dict[str, Callable[[Any], Any]]]) – mapping from target col-
umn name to callable function. If the source and target types differ for one or several
columns, a callable can be specified here. Typically this is needed when ingesting data
from a CSV file where the source data types are always strings, but might need to be cast
to int, float or Decimal. Example: {“customer_age”: int} would call int() on the source
value.

• columns (Optional[Sequence[str]]) – A list of column names to map. If unde-
fined, tries to map all unmapped columns in target row.

• auto_append (bool) – Call append after mapping rows if the mapping operation is
successful.

Return type None

8 Chapter 3. Classes

sqltask, Release 0.6.3

class sqltask.base.table.DqTableContext(name, engine_context, columns, comment=None,
schema=None, batch_params=None, times-
tamp_column_name=None, table_params=None,
dq_table_name=None, dq_engine_context=None,
dq_schema=None, dq_info_column_names=None,
dq_table_params=None)

A TableContext child class with support for logging data quality issues to a separate data quality table. A
with the ability to log data quality issues

delete_rows()
Delete old rows from target table that match batch parameters.

Return type None

get_new_row()
Get a new row intended to be added to the table.

Return type DqOutputRow

insert_rows()
Insert rows into target tables.

Return type None

migrate_schema()
Migrate table schema to correspond to table definition.

Return type None

class sqltask.base.table.DqOutputRow(table_context)

log_dq(column_name, category, priority, source, message=None)
Log data quality issue to be recorded in data quality table. If logging has been disabled by calling
set_logging_enabled(False), data quality issues will be ignored.

Parameters

• column_name (Optional[str]) – Name of affected column in target table.

• category (Category) – The type of data quality issue.

• source (Source) – To what phase the data quality issue relates.

• priority (Priority) – What the priority of the data quality issue is. Should be None
for aggregate data quality issues.

• message (Optional[str]) – Verbose description of observed issue.

Return type None

set_logging_enabled(enabled)
If logging is set to false, data quality issues will not be passed to the log table. This is useful for rows with
lower priority data, e.g. inactive users, whose data quality may be of poorer quality due to being stale.

Parameters enabled (bool) – set to True to log issues; False to ignore calls to log_dq‘

Return type None

class sqltask.base.lookup_source.BaseLookupSource(name, row_source, keys)

get(*unnamed_keys, **named_keys)
Get a value from the lookup. Assuming the key for a Lookup is key1, key2, key3, the following are valid
calls:

9

sqltask, Release 0.6.3

>>> # only unnamed keys
>>> lookup.get("val1", "val2", "val3")
>>> # only named keys in non-original order
>>> lookup.get(key3="val3", key1="val1", key2="val2")
>>> # both named and unnamed keys
>>> lookup.get("val1", key3="val3", key2="val2")

If a row is not found in the lookup table, the method returns an empty dict.

Parameters

• unnamed_keys – unnamed key values to be used as keys

• named_keys – named key values to be used as keys

Return type Dict[str, Any]

Returns A dict with keys as the column name and values as the cell values. If key undefined in
internal dict return an empty dict.

class sqltask.base.row_source.BaseRowSource(name=None)
Base class for data sources that return iterable rows. A row from a BaseRowSource can be any Mapping from
a key (=column name) to a value (=cell value) that can be referenced as follows: >>> for row in rows: >>>
column_value = row[“column_name”]

10 Chapter 3. Classes

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

11

sqltask, Release 0.6.3

12 Chapter 4. Indices and tables

INDEX

A
append() (sqltask.base.table.BaseOutputRow method),

8

B
BaseLookupSource (class in sql-

task.base.lookup_source), 9
BaseOutputRow (class in sqltask.base.table), 8
BaseRowSource (class in sqltask.base.row_source),

10
BaseTableContext (class in sqltask.base.table), 7

C
create_new() (sqltask.base.engine.EngineContext

method), 7

D
delete_rows() (sqltask.base.table.BaseTableContext

method), 7
delete_rows() (sqltask.base.table.DqTableContext

method), 9
DqOutputRow (class in sqltask.base.table), 9
DqTableContext (class in sqltask.base.table), 8

E
EngineContext (class in sqltask.base.engine), 7

G
get() (sqltask.base.lookup_source.BaseLookupSource

method), 9
get_new_row() (sqltask.base.table.BaseTableContext

method), 7
get_new_row() (sqltask.base.table.DqTableContext

method), 9

I
insert_rows() (sqltask.base.table.BaseTableContext

method), 7
insert_rows() (sqltask.base.table.DqTableContext

method), 9

L
log_dq() (sqltask.base.table.DqOutputRow method), 9

M
map_all() (sqltask.base.table.BaseOutputRow

method), 8
map_all() (sqltask.base.table.BaseTableContext

method), 7
migrate_schema() (sql-

task.base.table.BaseTableContext method),
8

migrate_schema() (sql-
task.base.table.DqTableContext method),
9

S
set_logging_enabled() (sql-

task.base.table.DqOutputRow method), 9

13

	Supported Engines
	Tutorial - Creating a simple ETL task
	Introduction
	Base task
	Creating an actual task

	Classes
	Indices and tables
	Index

