

Welcome to SqlTask’s documentation!

SqTtask is an extensible ETL library based on SqlAlchemy [https://www.sqlalchemy.org/]
to help build robust ETL pipelines with high emphasis on data quality.

Contents:

	Supported Engines

	Tutorial - Creating a simple ETL task
	Introduction

	Base task

	Creating an actual task

	Classes

Indices and tables

	Index

	Module Index

	Search Page

Supported Engines

SqlTask supports all databases that have a SqlAlchemy dialect and driver. The
following engines have dedicated support for the following insert modes:

	Database

	
	Insert mode

	

	Single

	Multirow

	CSV

	Parquet

	BigQuery

	Yes

	Yes

	Yes

	

	Postgres

	Yes

	Yes

	Yes

	

	Snowflake

	Yes

	Yes

	Yes

	

	Sql Server

	Yes

	Yes

	
	

	Sqlite

	Yes

	Yes

	
	

Engines not listed above will default to using multirow inserts if supported,
falling back to single row inserts as a last resort.

Tutorial - Creating a simple ETL task

This tutorial shows how to construct a typical ETL task. A fully functional
example can be found in the main repo of SqlTask:
https://github.com/villebro/sqltask/tree/master/example

Introduction

When creating a task, you will start by extending the sqltask.SqlTask class.
A task constitutes the the sequential execution of the following stages defined
as methods:

	__init__(**kwargs): define the target table(s), row source(s) and lookup
source(s). kwargs denote the batch parameters based on which a single snapshot
is run, e.g. report_date=date(2019, 12, 31).

	transform(): All transformation operations, i.e. reading inputs row-by-row and
mapping values (transformed or not) to the output columns. During transformation
data can be read from multiple sources, and can be mapped to multiple output tables,
depending on what the transformation logic is. During transformation row-by-row
data quality issues can be logged to the output table if using the DqTableContext
target table class.

	validate(): Post transformation data validation step, where the final output rows
can be validated prior to insertion. In contrast to the data quality logging in
the transform phase, validation should be done on an aggregate level, i.e. checking
that row counts are in line with what is acceptable, null counts are acceptable
etc.

	delete_rows(): If an exception hasn’t been raised before this step, the rows
corresponding to the batch parameters will be deleted from the target table. If
the task is defined to have one batch parameter report_date, this step in
practice issues a DELETE FROM tbl WHERE report_date = ‘yyyy-mm-dd’ statement.

	insert_rows(): This step inserts any rows that have been appended to the
output tables using whichever insertion mode has been specified. Generic
SqlAlchemy drivers will fall back to single or multirow inserts if supported,
but engines with dedicated upload support will perform file-based uploading.

Base task

For DAGs consisting of multiple tasks, it is commonly a good idea to create a base
task on which all tasks in the DAG are based, fixing the batch parameters in the
constructor as follows:

from datetime import date

from sqltask import SqlTask

class MyBaseTask(SqlTask):
 def __init__(report_date: date):
 super().__init__(report_date: report_date)

This way developers will have less ambiguity on which parameters the DAG tasks are
based on. For a regular batch task this is usully the date of the snapshot in question.
It is also perfectly fine to have no parameters or multiple parameters. Typical
scenarios:

	No parameters: Initialization of static dimension tables

	Single parameter: Calculation of a single snapshot, typically the snapshot date

	Multiple parameters: If data is further partitioned, it might be feasible to
split up the calculation into further batches, e.g. per region, per hour.

In this example, the the unit of work for the task constitutes creating a single
snapshot for a certain report_date.

Creating an actual task

In the following example, we will construct a task that outputs data into a single
target table, reads data from a SQL query and uses a CSV table as a lookup table.
The class is based on MyBaseTask defined above. We will do the following

	Define a target table my_table based on DqTableContext into which data is
inserted.

	Define a SqlRowSource instance that reads data from a SQL query.

	Define a CsvLookupSource instance that is used as a lookup table.

We have chosed DqTableContext as our target table class, as it can be used for
logging data quality issues. If we have our primary row data in CSV format, we
could also have used a CsvRowSource instance as the primary data source. Similarly
we could also use SqlLookupSource to construct our lookup table from a SQL query.

class MyTask(MyBaseTask):
 def __init__(self, report_date: date):
 super().__init__(report_date)

 # Define the metadata for the main fact table
 self.add_table(DqTableContext(
 name="my_table",
 engine_context=self.ENGINE_TARGET,
 columns=[
 Column("report_date", Date, comment="Date of snapshot", primary_key=True),
 Column("etl_timestamp", DateTime, comment="Timestamp when the row was created", nullable=False),
 Column("customer_name", String(10), comment="Unique customer identifier (name)", primary_key=True),
 Column("birthdate", Date, comment="Birthdate of customer if defined and in the past", nullable=True),
 Column("age", Integer, comment="Age of customer in years if birthdate defined", nullable=True),
 Column("blood_group", String(3), comment="Blood group of the customer", nullable=True),
],
 comment="The customer table",
 timestamp_column_name="etl_timestamp",
 batch_params={"report_date": report_date},
 dq_info_column_names=["etl_timestamp"],
))

TBC

Classes

	
class sqltask.base.engine.EngineContext(name, url, metadata_kwargs=None)

	
	
create_new(database, schema)

	Create a new EngineContext based on the current instance, but with a
different schema.

	Parameters

	
	database (Optional[str]) – Database to use. If left unspecified, falls back to the database
provided by the original engine context

	schema (Optional[str]) – Schema to use. If left unspecified, falls back to the schema
provided by the original engine context

	Return type

	EngineContext

	Returns

	a new instance of EngineContext with different url

	
class sqltask.base.table.BaseTableContext(name, engine_context, columns, comment=None, database=None, schema=None, batch_params=None, timestamp_column_name=None, table_params=None)

	The BaseTableContext class contains everything necessary for creating/modifying a
target table/schema and inserting/removing rows.

	
delete_rows()

	Delete old rows from target table that match batch parameters.

	Return type

	None

	
get_new_row()

	Get a new row intended to be added to the table.

	Return type

	BaseOutputRow

	
insert_rows()

	Insert rows into target tables.

	Return type

	None

	
map_all(row_source, mappings=None, funcs=None)

	Convenience method for mapping all rows and columns from the input row source
to the output table in a one-to-one fashion. The optional arguments mappings
and funcs can be used to specify alternative column name mappings and
conversion functions.

	Parameters

	
	row_source (BaseRowSource) – Input row source to map to the outout table.

	mappings (Optional[Dict[str, str]]) – mapping from target column name to source column name. If the
source and target names differ for one or several columns, these can be
specified here. Example: {“customer_name”: “cust_n”} would map the values
in the source column “cust_n” to the target column “customer_name”.

	funcs (Optional[Dict[str, Callable[[Any], Any]]]) – mapping from target column name to callable function. If the source
and target types differ for one or several columns, a callable can be
specified here. Typically this is needed when ingesting data from a CSV
file where the source data types are always strings, but might
need to be cast to int, float or Decimal. Example: {“customer_age”: int}
would call int() on the source value.

	Return type

	None

	
migrate_schema()

	Migrate table schema to correspond to table definition.

	Return type

	None

	
class sqltask.base.table.BaseOutputRow(table_context)

	A class for storing cell values for a single row in a
TableContext table. When the object is created,
all batch parameters are prepopulated.

	
append()

	Append the row to the target table. append()
should only be called once all cell values for the row have been fully populated,
as any changes.

	Return type

	None

	
map_all(input_row, mappings=None, funcs=None, columns=None, auto_append=False)

	Convenience method for mapping column values one-to-one from an input row
to the output row. Will only map any unmapped columns, i.e. if the target
row has columns “customer_id” and “customer_name”, and “customer_name” has
already been populated, only “customer_id” will be mapped.

	Parameters

	
	input_row (Mapping[str, Any]) – the input row to map values from.

	mappings (Optional[Dict[str, str]]) – mapping from target column name to source column name. If the
source and target names differ for one or several columns, these can be
specified here. Example: {“customer_name”: “cust_n”} would map the values
in the source column “cust_n” to the target column “customer_name”.

	funcs (Optional[Dict[str, Callable[[Any], Any]]]) – mapping from target column name to callable function. If the source
and target types differ for one or several columns, a callable can be
specified here. Typically this is needed when ingesting data from a CSV
file where the source data types are always strings, but might
need to be cast to int, float or Decimal. Example: {“customer_age”: int}
would call int() on the source value.

	columns (Optional[Sequence[str]]) – A list of column names to map. If undefined, tries to map all
unmapped columns in target row.

	auto_append (bool) – Call append after mapping rows if the mapping operation
is successful.

	Return type

	None

	
class sqltask.base.table.DqTableContext(name, engine_context, columns, comment=None, schema=None, batch_params=None, timestamp_column_name=None, table_params=None, dq_table_name=None, dq_engine_context=None, dq_schema=None, dq_info_column_names=None, dq_table_params=None)

	A TableContext child class with support for logging
data quality issues to a separate data quality table.
A with the ability to log data quality issues

	
delete_rows()

	Delete old rows from target table that match batch parameters.

	Return type

	None

	
get_new_row()

	Get a new row intended to be added to the table.

	Return type

	DqOutputRow

	
insert_rows()

	Insert rows into target tables.

	Return type

	None

	
migrate_schema()

	Migrate table schema to correspond to table definition.

	Return type

	None

	
class sqltask.base.table.DqOutputRow(table_context)

	
	
log_dq(column_name, category, priority, source, message=None)

	Log data quality issue to be recorded in data quality table. If logging
has been disabled by calling set_logging_enabled(False), data quality
issues will be ignored.

	Parameters

	
	column_name (Optional[str]) – Name of affected column in target table.

	category (Category) – The type of data quality issue.

	source (Source) – To what phase the data quality issue relates.

	priority (Priority) – What the priority of the data quality issue is.
Should be None for aggregate data quality issues.

	message (Optional[str]) – Verbose description of observed issue.

	Return type

	None

	
set_logging_enabled(enabled)

	If logging is set to false, data quality issues will not be passed to the
log table. This is useful for rows with lower priority data, e.g. inactive
users, whose data quality may be of poorer quality due to being stale.

	Parameters

	enabled (bool) – set to True to log issues; False to ignore calls to log_dq`

	Return type

	None

	
class sqltask.base.lookup_source.BaseLookupSource(name, row_source, keys)

	
	
get(*unnamed_keys, **named_keys)

	Get a value from the lookup. Assuming the key for a Lookup is
key1, key2, key3, the following are valid calls:

>>> # only unnamed keys
>>> lookup.get("val1", "val2", "val3")
>>> # only named keys in non-original order
>>> lookup.get(key3="val3", key1="val1", key2="val2")
>>> # both named and unnamed keys
>>> lookup.get("val1", key3="val3", key2="val2")

If a row is not found in the lookup table, the method returns an empty dict.

	Parameters

	
	unnamed_keys – unnamed key values to be used as keys

	named_keys – named key values to be used as keys

	Return type

	Dict[str, Any]

	Returns

	A dict with keys as the column name and values as the cell values.
If key undefined in internal dict return an empty dict.

	
class sqltask.base.row_source.BaseRowSource(name=None)

	Base class for data sources that return iterable rows. A row from a BaseRowSource
can be any Mapping from a key (=column name) to a value (=cell value) that can
be referenced as follows:
>>> for row in rows:
>>> column_value = row[“column_name”]

Index

 A
 | B
 | C
 | D
 | E
 | G
 | I
 | L
 | M
 | S

A

 	
 	append() (sqltask.base.table.BaseOutputRow method)

B

 	
 	BaseLookupSource (class in sqltask.base.lookup_source)

 	BaseOutputRow (class in sqltask.base.table)

 	
 	BaseRowSource (class in sqltask.base.row_source)

 	BaseTableContext (class in sqltask.base.table)

C

 	
 	create_new() (sqltask.base.engine.EngineContext method)

D

 	
 	delete_rows() (sqltask.base.table.BaseTableContext method)

 	(sqltask.base.table.DqTableContext method)

 	
 	DqOutputRow (class in sqltask.base.table)

 	DqTableContext (class in sqltask.base.table)

E

 	
 	EngineContext (class in sqltask.base.engine)

G

 	
 	get() (sqltask.base.lookup_source.BaseLookupSource method)

 	
 	get_new_row() (sqltask.base.table.BaseTableContext method)

 	(sqltask.base.table.DqTableContext method)

I

 	
 	insert_rows() (sqltask.base.table.BaseTableContext method)

 	(sqltask.base.table.DqTableContext method)

L

 	
 	log_dq() (sqltask.base.table.DqOutputRow method)

M

 	
 	map_all() (sqltask.base.table.BaseOutputRow method)

 	(sqltask.base.table.BaseTableContext method)

 	
 	migrate_schema() (sqltask.base.table.BaseTableContext method)

 	(sqltask.base.table.DqTableContext method)

S

 	
 	set_logging_enabled() (sqltask.base.table.DqOutputRow method)

 nav.xhtml

 Table of Contents

 		
 Welcome to SqlTask’s documentation!

 		
 Supported Engines

 		
 Tutorial - Creating a simple ETL task

 		
 Introduction

 		
 Base task

 		
 Creating an actual task

 		
 Classes

_static/file.png

_static/minus.png

_static/plus.png

